A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators

This paper is concerned with the fast computation of Fourier integral operators of the general form ∫ Rd e f(k)dk, where k is a frequency variable, Φ(x, k) is a phase function obeying a standard homogeneity condition, and f is a given input. This is of interest for such fundamental computations are connected with the problem of finding numerical solutions to wave equations, and also frequently ...

متن کامل

Fast Computation of Fourier Integral Operators

We introduce a general purpose algorithm for rapidly computing certain types of oscillatory integrals which frequently arise in problems connected to wave propagation and general hyperbolic equations. The problem is to evaluate numerically a so-called Fourier integral operator (FIO) of the form ∫ ea(x, ξ) f̂(ξ)dξ at points given on a Cartesian grid. Here, ξ is a frequency variable, f̂(ξ) is the F...

متن کامل

A Multiscale Butterfly Algorithm for Multidimensional Fourier Integral Operators

This paper presents an efficient multiscale butterfly algorithm for computing Fourier integral operators (FIOs) of the form (Lf)(x) = ∫ Rd a(x, ξ)e f̂(ξ)dξ, where Φ(x, ξ) is a phase function, a(x, ξ) is an amplitude function, and f(x) is a given input. The frequency domain is hierarchically decomposed into a union of Cartesian coronas. The integral kernel a(x, ξ)e in each corona satisfies a spec...

متن کامل

Fast wave computation via Fourier integral operators

This paper presents a numerical method for “time upscaling” wave equations, i.e., performing time steps not limited by the Courant-Friedrichs-Lewy (CFL) condition. The proposed method leverages recent work on fast algorithms for pseudodifferential and Fourier integral operators (FIO). This algorithmic approach is not asymptotic: it is shown how to construct an exact FIO propagator by 1) solving...

متن کامل

Bilinear Fourier Integral Operators

We study the boundedness of bilinear Fourier integral operators on products of Lebesgue spaces. These operators are obtained from the class of bilinear pseudodifferential operators of Coifman and Meyer via the introduction of an oscillatory factor containing a real-valued phase of five variables Φ(x, y1, y2, ξ1, ξ2) which is jointly homogeneous in the phase variables (ξ1, ξ2). For symbols of or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multiscale Modeling & Simulation

سال: 2009

ISSN: 1540-3459,1540-3467

DOI: 10.1137/080734339